
Buletin Teknik Elektro dan Informatika
(Bulletin of Electrical Engineering and Informatics)
Vol.1, No.1, March 2012, pp. 23~28
ISSN: 2089-3191 23

Received October 6, 2011; Revised November 12, 2011; Accepted January 6, 2012

Designing a Secure Object Oriented Software Using
Software Security Life Cycle

Mohammad Obaidullah Bokhari1, Mahtab Alam2
1Chairman, Department of Computer Science, Aligarh Muslim University, Aligarh

Uttar Pradesh, India
2Research Scholar, Mewar University, Chittorgarh, Rajasthan, India, Ph: 09411653979

e-mail: mubokhari@rediffmail.com1, alam_mahtab@rediffmail.com2

Abstract
 The security of object oriented software is well managed by software metrics because

it guarantees accurate, reliable, faster and more efficient ways with proven techniques and
standard notations. The Software Security Life Cycle (SSLC) was developed and provided a
basis to help software security planning. In this paper, software metrics, which have been
proposed for Software Security, are used and applied to programming language. In software
industries, the cost of Security of large-scale software has put emphasis on the need to manage
in the earlier phases, statistically estimate the security of large software system and to identify
error prone modules.

Keywords: Software Security Planning, Software Metrics, Object Oriented Analysis, Object Oriented
Design, Software Security Life Cycle.

1. Introduction
 Software security is a major activity in the software industry. It has been reported that
cost and effort spent on software security is very high, approximately between 65% to 70% of
total software development and support efforts [1]. Software reengineering, recently, have been
advocated as a means of reducing security costs [9]. Software security is the degree to which it
can be understood, corrected, adapted and/or enhanced existing software. Software security is
the costlier activity to all other engineering discipline because of its complexities. Software
system has been a dominant influence of successful business, as the growth of scales and
contents of the software system [5]. Most of the software systems have become too complex to
developed by individual efforts. The development of software usually involves teamwork and
needs good communication. However, a lack of validated widely accepted and adopted tools for
planning, estimating, and performing security also constitute to the security problem [2].
 Object oriented design and programme are the dominant development paradigm for
software systems today [3]. The object oriented model closely represents the problem domain,
which makes it easier to produce and understand design. It is also believed that object oriented
design will encourage more re-use, i.e., new application can use existing modules more
efficiently and effectively, thereby, reducing development cost and time [6]. Classes and
methods are the basic construct for object oriented technology. The amount functions provided
by an object oriented software can be estimated based on the number of identified classes and
methods or its variants. Therefore, it is natural that the basic object oriented metrics are related
to classes and methods and the size or function points of the classes and methods [4]. The
object oriented system have promoted for ease of design, coding and use implying that security
and testing are easier and cheaper than other traditional engineering. Object oriented paradigm
will significantly increase reusability, extendibility, interoperability and reliability provided which
the systems are maintained adequately.

Over the years, researchers have been working on the probable of Software Security to
reduce cost. New technologies, such as structured design case tools and object oriented
programming, have been adapted as the latest “Silver bullets”, only to prove inert later in
practice [10]. The most important factor of the high cost of software security is the lack of close

 � ISSN: 2089-3191

Buletin TEI Vol. 1, No. 1, March 2012 : 23 – 28

24

and effective management of security process. Figure 1 depicts the stages of Software Security
Life Cycle (SSLC). Recently, the most of the researchers have shifted from a project-oriented
view to a product life cycle oriented view of Software Security and trying to understand the
characteristics of security demands. Three different phases were reported in SMLC. Repair
rises in first stage, small enhancement in the second stage, and major enhancement climbs in
the third stage.

Figure 1. Software Security Life Cycle

2. The SSLC Model and Security Management Framework.
The Software Security Life Cycle is confined to project level (Figure 2) has mainly four

stages. The characteristics and function of the stages are as under:
• Introduction Stage: The users, in this stage, are those who devoted S/W. During this

stage the major concerns are how to make the software works. The security mechanism is
concern in this stage.

• Growth Stage: In this stage, system usage is up and the number of system attacks
reported is important. As the software enters this stage, the monitoring of system attacks
and users problem reports is an important concern. In order to mange the increasing
security demand, it is critical to allocate more programmers copying with the increasing
countermeasure requests to prevent accumulating dissatisfaction. The Security tolerance
is the main concern in this stage.

• Maturity Stage: After deploying the system, the users experience the growth of
enhancement requests in the maturity phase. At this stage, the focus is enhancement of
projects. Security experts are expanding the software functions and trying to prolong the
life of the software.

• Decline Stage: At this stage, the software is easy to vulnerate, and attackers can easily
exploit it. The users require software renovation. In this phase, production team must
choose between integrating the software with other secutiy mechanism or developing a
substitute software.

 Development Complete

Release redefine
Stage

Figure 2. Characteristics of SSLC

Change

Control

Testers Vulnerability

Traced

Prioritize Vulnerability
Resolved

Introducti
on Stage

Growth
Stage

Maturity
Stage

Decline

Stage

TELKOMNIKA ISSN: 2089-3191 �

Designing a Secure Object Oriented Software Using …… (Mohammad Obaidullah Bokhari)

25

3. Metrics Uses in OO Design:
 Software Security is basically characterized by the four functions of software metrics,
which are as follows:
i. Planning: Metrics are used to serve as the cost estimation, resources, training, scheduling,

etc.
ii. Improving: Metrics used for the improvement of software quality.
iii. Controlling: Metrics used to size and schedule of the software process.
iv. Organizing: Metrics are used to check the status and track according to compliance.

Table 1. Metrics with their Threshold value
Metrics Threshold Value
Average Size (LOC) Should be less than 24 for C++ and 8 for Smalltalk.
Average Number of Should be less than 6
Instance variable/Class
Average Number of Should be less than 20
Methods/Class
Depth of Inheritance Tree (DIT) Should be less than 10, starting from base class
Number of class/class Should be relatively
Relationship in each module high.
Number of Modules relationship Should be low
Number of Instance Variables Depends on group of methods in a class.
Average Number of comments
Line per method Should be greater than 1.
Number of problem per class Should be low.
Number of Times class is If a class is not being reused
Reused in different application, it might need to be redesigned.
Number of classes and methods Should occur at a steady
Thrown away rate throughout most of the development process.
Fan In (FIN) Should be low.
Public Access to Data member Should be low.

For better understanding, we should analyze the relationship among these metrics and

correlate them every three months after (snapshot). These are some metrics generally used in
the time of Object Oriented software design phase, which play an important role during the
security phase of the entire life cycle of the software system. The Table 1 shows the metrics
with their Threshold value [4].

From the table shown above, some of these metrics are guidelines for Object Oriented
design and development, while some of these metrics are used for quality indicator and a few is
used for validation of Object Oriented development process.

 Security Introduction Growth Maturity Decline
 Request

 Figure 3. Stages of SSLC

Prioritize
and assign
vulnerability
s

Developers
resolves
vulnerabilitys

 � ISSN: 2089-3191

Buletin TEI Vol. 1, No. 1, March 2012 : 23 – 28

26

4 Software Security Management Framework
The Software Security Life Cycle provides a general picture of the changes of software

Security of Object Oriented software as shown in Figure 3. to apply the SMLC in software
Security management as need to develop a framework providing quantifiable methods to
identify different Security stage. The software Security management using Vulnerability
Convergence Tracking process (Figure 1) consists of the following procedure such as Change
Control, Testers, Vulnerability Traced, Prioritize and Vulnerability resolve.

5. Approach to Improve Software Security
 In this paper, Microsoft Solution Framework (MSF) Process Model is used to improve
the software quality and security to meet the acceptance criteria of a system. The testing phase
design and document test specifications and test cases write automated scripts. And run
acceptance tests as components that are submitted for formal testing.

In this phase, the team assesses and reports on overall solution quality and security
and feature completeness. The testing team can trace vulnerabilities as shown in Figure 1
based on development and testing roles. The steps in the vulnerability tracking process are:
i) Developers develop code and then check this code into the change control system.
ii) Testers perform the daily or periodically build an external coverage testing on all submitted

code.
iii) Testers submit vulnerabilities into vulnerability tracking system, entering vulnerabilities

description and repeatability, severity and visibility variables.
iv) The development and test leads conduct a prioritization meeting and calculate each of the

vulnerability priority.
• Assign vulnerabilities that exceed the zero-defect criteria to developers for correction.
• Omit vulnerabilities from a previous cycle of the sub-process that were corrected.

v) Assign developer’s resolve or correct vulnerability.
vi) Developers perform internal coverage testing and then check this code into the change

control system.

6. MSF Based Vulnerability Tracking And Categorizing Model
 The MSF vulnerability categorization model builds on the risk categorization system. A
risk is something that has not yet occurred, so probability of occurrence and impact of the risk to
the project are appropriate variables to estimate. These two variables are multiplied together to
produce the risk exposure value, which is used to prioritize these risks. The important variables
to an individual vulnerability are:

Table 2. Prioritization Table.
Variable Condition

Repeatability A percentage in the range of 10% through 100%, where 100% shows that
the vulnerability is reproducible on every test run.

Visibility A percentage in the range of 10% to 100%, where 10% indicates that the
vulnerability is visible under the most obscure conditions. Vulnerabilities that
manifest themselves in environment with simple conditions are said to be
highly visible.

Severity An integer in the range of 1 through 10, where classification 10 vulnerabilitys
presents the most impact to the solution or code.

Table 3. Big Prioritization Table.
Events Repeatability Visibility Severity Priority

1 1 1 10 20
2 .9 .9 9 16.2
3 .8 .8 8 12.8
4 .7 .7 7 9.8
5 .6 .6 6 7.2
6 .5 .5 5 5.0
7 .4 .4 4 3.2

TELKOMNIKA ISSN: 2089-3191 �

Designing a Secure Object Oriented Software Using …… (Mohammad Obaidullah Bokhari)

27

The priority of the vulnerability can be calculated as:

 (Repeatability + Visibility) X Severity = Priority

The vulnerabilities priority can be displayed by using prioritization matrix in Table 3.

7. Data Collection
 The second step on the collection of priority data forms the software developer and
tester. This data collection will form the core against which metrics values will be compared to
develop the vulnerability-tracking model. The testing types can collect the data.

8. Coverage Testing
 Coverage testing is low level technical testing. When a developer write a section of
codes, expert creates an automated unattended installation and performs low level testing to
ensure that the solution meets the functional specification. In MSF, it is also called as prefix
testing. To perform such type of testing, a buddy testing involves using developers who are not
working directly on the creation of particular code segment, and employing them to perform
coverage testing on their colleague’s code. This strategy works well because the skills, which
are required by coverage testers, are on the same level as the skills that are required for
development.

9. Usage Testing
 Usage testing is potential users of the solution of this group and often performs a high
level testing. This type of testing is very important because it ensures that vulnerabilities are
related to user performance enhancement captured and addressed. Automated scripts and
checklist are a best practice because they provide repeatability and perspective direction to the
usage tester, which will improve accuracy.

10. Approach of Validation
 This section discusses the validation of the estimated approach. As a matter of
approaches validity, it must be verified that:
i) The data does not contain any vigorous data that violate any considered assumption for

the development of the model. This can be achieved by plotting standardized residual
values against standardized predicted value of the dependent variables. If the model is
appropriate for data, the residuals should follow a normal distribution.

ii) Another validation plot is the standardized predicted values versus observed values to
check the data coincidence. If the model fit each data value exactly, the observed and
predicted values would coincide as straight line.

 In our validation experiment 92 KLOC of C source code, taken from large and medium
sized industrial system, the metric values were used in the model for assessing the security
index. The difference between predicted value and the observed value of our validation data
are close enough in most of the cases. One of the major difficulties in software Security is the
Security of consistency of various documents, including requirement documents, design
documents; comments in source code and source code themselves. MSF maintain the links
and semantics of related sub model, which are represented, in standard models and
documents. The consistency of these related documents can be enhanced through MSF,
which then significantly help improve security.

11. Conclusion
 Software Security is going to be a big challenge for many years to come. It is considered
that predicting the software Security at design phase will definitely reduce the cost and effort of
software development. The intent of this paper is to improve security using a vulnerability
tracking and vulnerability removing approach. At the module level, this model can be used to

 � ISSN: 2089-3191

Buletin TEI Vol. 1, No. 1, March 2012 : 23 – 28

28

monitor changes to the system as they occur and as a method of predicting vulnerability prone
model. Although this model may not be perfect in all environments, it demonstrates the utility of
developing such models tailored for particular application domains. Developers and maintainers
follow the process described in this paper to further customize the security model for their
domain.
 In this paper, we have presented a comprehensive approach to identify the metrics used
in Object Oriented design and analysis to predict the security of a software system. The SMLC
model and the management framework can identify the Security life cycle and synthesizes the
product and integrate with Security.

Reference:
[1] Krishan K Aggarwal, Yogesh Singh, Jitender Kumar Chhabra. An Integrated Measure of Software

Manitainability. Proceedings Annual Reliability and Security Symposium. 2002; 235-241.
[2] Jane Huffman Hayes, Sandip C. Patel, Liming Zhao. A Metrics-Based Software Maintenance Effort

Model. Proceedings of the Eighth European Conference on Software Security and Reengineering
(CSMR-04). 2004.

[3] Melis Dagpinar and Jens H. Jahnke. Predicting Security with Object Oriented Metrics- An Empirical
Comparison. Proceedings of the 10th Working Conf. On Reverse Engineering (WCRE-03), 2003.

[4] Stephen H Kan. Metrics and Models in Software Quality Engineering. 2nd Edition. Pearson
Education. 2003.

[5] Chu C William, I U Chih-wet, Yuehmin Huang, Boowen Xu. Software Security Improvement:
Integrated standard and Models. Proc. Of 28th Annual Intl. Computer Science and Application Conf.
(COMPSAC02). 2002.

[6] Pankaj Jalote. An Integrated to Software Engineering. 2nd Edition. Narosa Publication Home. 2002.
[7] Roger Pressman. Software Engineering A Practitioner’s Approach. 4th Edition. McGraw Hill

Companies Inc. 1997.
[8] Microsoft.Net. Analyzing Requirement and Designing Microsoft.Net Solution Architecture. Prentice

Hall India Pvt. Ltd. 2004.
[9] M HarrySneed, Agnes Kapose. A Study on the Effect of Reengineering Upon Software Security.

IEEE Press. 1990; 91-99.
[10] Slaughter, S A. Software Development Practices and Software Security Performance. Thesis.

Minnesota: University of Minnesota; 1995.

